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Numerical Solution of the Continuous
Waveguide Transition Problem

WILLIAM A. HUTING, MEMBER, IEEE, AND KEVIN J. WEBB, MEMBER, IEEE

Abstract — Wavegnide transitions are an essential part of many mi-

crowave systems. A simple transition between two sizes of rectangular

waveguide is anatyzed by using the generahzed telegraphists eqnation.

Solutions are obtained using a new moment method technique, a

Runge-Kutta algorithm, and an iterative numerical integration technique.

The results are compared to previously pubtished experimental and nnsner-

ical data.

I. INTRODUCTION

T HE TEOI CIRCULAR waveguide mode is character-

ized by an attenuation which decreases monotonically

with frequency [1]. Thus, operating in this mode at a

frequency well above cutoff is a widely used method of

achieving low-loss transmission over long distances (see,

for example, [2]). This implies operation in the multimode

regime. Unfortunately, many microwave power sources are

not compatible with circular overmoded waveguide but

instead with standard sizes of rectangular and circular

waveguide. The problem of designing a transition between

rectangular single-mode waveguide and circular over-

moded waveguide has been studied by various researchers

[3]-[8]. Another area of interest has been the task of

designing a transition between two sizes of circular wave-

guide (e.g., [9] and [10]). However, only a relatively small

number of papers have considered numerical approaches

to the waveguide transition design problem [6], [7], [10].

These approaches can be divided into two classes: the

solution of a system of ordinary differential equations [6],

[7], [10], and an approximation of the transition as a series

of steps and the subsequent use of a mode-matching

technique [10]. A new approach to the differential equation

method using the method of moments [11] is presented

here. As a test problem, this technique is applied to a

simple transition between two sizes of rectangular wave-

guide, as illustrated in Fig. 1. Other approaches are also
discussed. The results obtained here are compared to pre-

viously published experimental [12] and numerical [7] data.

Finally, the moment method technique is briefly discussed

in terms of its applicability to overmoded transition prob-

lems.
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Fig. 1. Rectangular-to-rectangular waveguide transition.
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Fig. 2. Generalized waveguide transition geometry,

H. THE GENERALIZED TELEGRAPHIST’S EQUATION

One of the earliest theoretical treatments of nonuniform

waveguides was given by Reiter [13], who utilized the

well-known fact that uniform waveguide modal fields can

be used as a complete orthogonal basis for physically

realizable electromagnetic fields [14]. Extending this con-

cept to waveguide transitions such as that shown in Fig. 2,

he asserted that the transverse electromagnetic fields could

be written as a sum of the transverse mode functions [13]:

Et(x, y,z)= E Vw(z)em(x, y,z) (1)
~=1

Ht(x, y,z) = ~ Im(z)hm(x,y,z) (2)
~=1

where the parameters V~( z ) and ZM(z ) are known respec-

tively as the equivalent voltages and the equivalent cur-
rents. A discussion of the validity of (1) and (2) can be

found in [9] and [16]. By inserting (1) and (2) into the

transverse form of Maxwell’s equations and applying the

appropriate boundary conditions on the transition inner

surface, one obtains the so-called generalized telegraphist’s
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equation [13], [15], [16]:
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where

H
dei

~,= e.. —ds.
s J dz

(4)

The variables y, in (3) are the complex propagation con-

stants and the variables Z, are the modal impedances.

Solymar [17] decomposed the equivalent voltages and cur-

rents into forward- and backward-traveling waves and

gave some approximate solutions to the resultant system of

differential equations. Later, Saad et al. evaluated numeri-

cally the approximate expressions of Solymar for several

transitions including the simple rectangular-to-rectangular

transition [7] to be treated in this paper. Our approach

deals with (3) directly. Let the two ends of the transition

occur in the planes z = O and z = L. What is sought is the

hybrid matrix (K(z)) as defined by

As noted in [10], the differential equation

given by

j(K)=(C)(K)

(5)

for (K(z)) is

(6)

where (C) is the square matrix from (3). The initial condi-

tion used in the solution of (6) is

K(z=O)=U (7)

where U is the unit (or identity) matrix. In this paper, the

matrix (K) is evaluated according to (6) and (7) and

(K(z = L)) is subsequently used to calculate the general-

ized scattering matrix which characterizes the overall tran-

sition [18].

III. SOLUTIONS VIA A MOMENT

METHOD TECHNIQUE

The first step in our method of solution is to truncate

the infinite system of ordinary differential equations given

in (3). Let N denote the number of differential equations

and let q denote the column of the (K) matrix for which a

solution is sought. Equation (6) is written symbolically as

N

~K.q = Z cmnKnq
~=1

with the boundary condition

(8)

Kmq(z=t)) = ~mq (9)

where S~~ is the Kronecker delta function. One physical

. . . ylzl () m.0

0 Y2Z2

. . . –;ll –T21 . . .

– T12 – Tzz

VI
V2

II
12

(3)

interpretation for (8) and (9) is seen by comparison with

(3). If the equivalent voltage or current occupying the qth

position in the column vector in (3) is set equal to 1 at

z = O and all other equivalent voltages and currents are set

equal to zero at that position, then (3) is identical to (8)

and (9), and solution of (8) and (9) simply gives the

equivalent voltages and currents along the length of the

transition under these conditions.

We now approximate each element KMq as the sum of E

expansion functions:

Km,(z) = ; cqn,f[(z). (10)
1=1

In the discussion that follows, it will be assumed that

~l(z = O) = 1, and that all the other expansion functions
vanish at z = O. Thus, the boundary condition represented

by (9) becomes

–8alm — mq- (11)

As a first step in ‘obtaining a solution for the remaining

coefficients al~, we consider of set of (E – 1) weighting

functions wk. An inner product is defined by

(g, h)=~~g(z)h(z)dz. (12)

Combining (8) and (10) and taking the appropriate inner

products, one obtains

f (w; )%=f f (Wkc?mfl)%. (Is)
[=1 [=1 n=l

Rearranging (13) and making use of (11), one finds

;,;2((%::) )~mn–(Wk,Cm,,fl) al.

._ ()Wk, : fimq + (Wk, Cmqfl). (14)

Equation (14) may be written in matrix form as

(lI).(& )=(c). (15)

The elements of (B) are given by

b((m–l)(E–ll) +k, (n–l)(E--l)+l–l)
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Fig. 3. Expansion and weighting functions for E = 5. (a) Triangle ex-

pansion functions. (b) Pulse weighting functions. (c) Weighting func-
tions for Galerkin’s method.

with

l<m, n<N

l<k<E–1

2<1<E.

Here b(i, j) refers to the element occupying the ith row

and jth column of (B). (B) is a square matrix with

dimension N( E – 1). The elements of the column vectors

(6) and (c) are given by

ii((n-l)(E -l)+ l-l) =aln (17)

(( )dfl
c((m–l)(E–l)+k)=– w~, z 8~~+(w~,CM~fJ.

(18)

It should be noted that the matrix (B) is in no way

dependent on which column of the (K) matrix is being

evaluated.

In this paper, we use one set of expansion functions and

two sets of weighting functions. The set of expansion

functions consists of the subsectional triangles

l“
Z—z[ 1

l–(E–1)~, ~ <—

f,=
Z—z[

‘;l , (19)

o
L ‘E–1

where

z,=(z–l)~, i=l,2,3,. ... E. (20)

A graph of these triangle functions is given in Fig. 3(a).

For weighting functions, one may choose a set of pulses

(1, Zk<z<zk+lWk =
O, otherwise.

(21)
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Frequency, GHz

Fig. 4. Theoretical versus experimental V’S WR for linear transition.
The theoretical curve was generated considering only the TE1O mode.
The same results were obtained using a Runge–Kutta technique, an

iterative integration technique, and Galerkin’s method with triangle

expansion functions.

These pulses are shown in Fig. 3(b). There is one more

expansion function than there are weighting functions. The

“extra” expansion function, however, is fl( z ), which has a

known coefficient, determining (c). In this paper, the inner

products which make up (B) are evaluated numerically

using the midpoint rule [19] with 20 integration points per

triangle base.

As an alternative to (21), one may use Galerkin’s method,

as illustrated in Fig. 3(c), where

‘k=fk+l. (22)

For this choice, the set of weighting functions is the same

as the set of expansion functions (not counting the expan-

sion function fl, which has a known coefficient). Use of

(19) and (22) is also termed a finite element method [20].

IV. NUMERICAL RESULTS

In this section, a simple linear single-mode transition

between standard WR-650 waveguide and a waveguide

with the same width but a smaller height is analyzed. The

dimensions of this device are (Fig. 1): a = 6.500 in, bl =

3.250 in, b2 = 0.400 in, L = 19.392 in. There are three

reasons for choosing this transition as a test case. First of

all, closed-form expressions are easily derived for the ele-

ments of the matrix in (3). Second, dimensions and experi-

mental results (for TEIO incidence on the large end of the

transition between 1.0 and 1.8 GHz) are given by Young

[12]. Finally, this transition was also analyzed by Saad

et al. [7]. They solved the one-mode version of Solymar’s

differential equation [17] by two methods, namely numeri-

cal integration of Solymar’s approximate expressions and

use of the standard IBM routine DLBVP [23], and they

found the two computed VS WR’s to be in agreement to

within 5 percent [7]. For the one-mode case, we solved (8)

using a Runge–Kutta technique. Our computed VSWR,

which is shown in Fig. 4 along with Young’s experimental

data, appears to be extremely close to [7, fig. 3]. Theory

and experiment are in good agreement except below 1.1

GHz, where in the experiment the small end of the transi-
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tion appears to have been poorly matched. We also solved

the one-mode problem two other ways. One method con-

sisted of successively integrating (6) until (K) converged to

a solution. For the first iteration, (K) was set equal to the

identity matrix. According to [10], this method, when

applied to circular-to-circular transitions, yields the same

results as discretizing the transition boundary and apply-

ing mode matching and uses a comparable amount of

computer time. We found that by employing the midpoint

rule [19] with 100 integration points, the VS WR curve

approached that of Fig. 4 after 50 iterations. Finally,

Galerkin’s method was used with triangle expansion func-

tions and E = 31. Condition numbers for (B) were com-

puted by multiplying the one-norm of ( B) by the one-norm

of the computed inverse of ( B), The reasons for computing

this parameter are that a matrix with a high condition

number tends to amplify errors due to factors such as

roundoff. Condition numbers close to 1 are desirable [21].

Although the condition numbers were high (typically 4x

105) the results for the VS WR and the (2x 2) scattering

matrix were identical to those computed using the

Runge–Kutta technique. The reciprocity relation S’lz = Szl

was extremely well satisfied by the moment method and

the Runge–Kutta routines, but it was not well satisfied by

the integration technique. The am’ounts of computer time

used on the Hitachi NAS 9160 were seven seconds for the

Runge–Kutta technique, six minutes for the integration

technique, and six minutes for the Galerkin method pro-

gram. The moment method routines described @ this

section all employed double precision (64 bit) arithmetic,

while the one-mode Runge–Kutta and integration routines

employed single precision arithmetic. None of the routines

were optimized with respect to run time or storage.

When the evanescent TEII and TMII modes are in-

cluded in (8), numerical instabilities occur in both the

Runge–Kutta routine and the iterative integration tech-

nique. For the linear transition, a double precision version

of the Runge–Kutta routine failed to converge even though

the number of points was varied between 11 and 501.

Similarly, a double precision version of the integration

technique program also failed to converge. The method of

moments was also used, taking the TEIO, TEII, and TM1l

modes into account. Fig. 5 shows the calculated VS WR for

E =6,7,8,9,10 using triangle expansion functions and

Galerkin’s method. For E =6, condition numbers ranged

from 2 X 108 to 2 X 109, while for E =10, condition num-

bers were in the range 2x108 to 3x109. The computed

VS WR seemed to agree with the experimental results on

average with greater oscillations as E was increased. An

alternative method of solution is to divide the transition

into several sections of equal length, to analyze each sec-

tion with E = 6, to cascade the several sections, and to
compute the overall scattering matrix. Cascading simply

involves multiplication of the (K) matrices representing

each section. Fig. 6 shows the results when the transition

was divided into one through six sections, again using

Galerkin’s method. For six sections, most of the condition

numbers were in the range 3 X 107 to 1 X 108, and the

2.2
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Fig. 5. Calculated VSW’R using triangje expansion functions and

Gaterkin’s methodl. The TE1O, TE1l, and TM1l modes were consid-

ered and the number of triangles ~ was varied.
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Fig. 6. Calculated VS WR using tnan~le expansion functions and

Galerkin’s method and considering the TE1O, TE1l, and TM1l modes.

The transition was divided into several sections, each of which was

anatyzed’ with E== 6.

computed VS WR converged to a solution close to the’

single-mode solution described above. Also, the solutions

for five and six sections were indistinguishable, indicating

convergence. Finally, as a simple check on the validity of

the Galerkin method program, a straight uniform wave-

guide was analyzed for E = 6 and for six cascaded sec-

tions. The computed (6x 6) scattering matrices were close

to the expected results, and condition numbers for (B)

were, typically, i~bout 107.

Another checlk on the validity of the Galerkin method

program may be performed as follows. First, one writes

the generalized scattering matrix in submatrix form:

(23)

where port 1 occurs in the, z = Op“lane and port2 occursin

the z = L plane. The mode coefficients a i and bi are
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Fig. 7. Scattering parameters from (23) computed using Galerkin’s
method with E = 6 and six cascaded section. Real ( S~~)—dot. Reaf

(S~~)–dash. Imag (,!l~f)-chaindot. Imag (,S~/)-chaindash.
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Fig. 8. Scattering parameters from (23) computed using Gaferfcin’s
method with E = 6 and six cascaded sections. Reaf ( S~~) —dot. Red

(S~/ )–dash. Imag (S~~)–chaindot. Image (S~~)–chaindash.

explicitly written as

ai=ls)bi=ls]’24)
where i denotes the port (1 or 2). The submatrices S1l,
S12, S 21, and S’22 have been truncated to 3 X 3. From the

Lorentz reciprocity y theorem, using normalized modes, one

may derive S~ll = S1~?,Si~l = S’\2, and S? = SJ~2.These re-

quirements are poorly satisfied when Galerkin’s method is

used with E = 6 and one section but well satisfied for

E = 6 and six cascaded sections. Figs. 7 and 8 show several

of the oomputed scattering parameters as a function of

frequency for this later case.

One possible explanation for the numerical problems

which occur in the three-mode case may lie in the fact that

(C) has higher condition numbers in the three-mode case

(4X 105 to 3 x 106) than in the one-mode case (typically

4 X 105). Both the Runge–Kutta technique and the itera-

—.-

h2.0 ,
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1.8 \’ij,

., I
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—E=1o
—— EXP.[12]
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1.1 1.2 1.3 1.4 1.5 1.6 1.7 1 3

FREQUENCY, GHz

Fig. 9. Calculated VS WR using triangle expansion functions and pulse

weighting functions and considering the TE1O, TE1l, and TM11 modes.

The number of triangles E was varied.
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Fig, 10. Calculated VS WR using triangle expansion functions and pulse
weighting functions and considering the TE1O, TE11, and TM11 modes.

The transition was divided into several sections, each of which was

analyzed with E = 6.

tive integration technique involve repeated use of (C). In

comparison, the Galerkin method program involves a ma-

trix (B) which has a condition number somewhat higher

than that of (C), but it uses that matrix (B) only once, in

the solution of (15).

Fig. 9 shows the calculated VS WR for E =6,7,8,9,10

using the method of moments with triangle expansion and

pulse weighting functions. Computed condition numbers

ranged between 2 X 108 and 3 X108 for E = 6 and between

1012 and 1013 for E =10. Dividing the transition into

several cascaded sections was also attempted and the re-

sults are shown in Fig. 10. The condition numbers ranged

between 109 and 4 X 1011 for two sections and E =6. In no

case were the reciprocity y relations well satisfied for the

pulse weighting function method. For E larger than 10, or

for more than two cascaded sections, the results became

unstable.

To summarize, of the techniques examined here, only

Galerkin’s method (with cascading) converges to a satis-
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WR-SKl waveg”rde

Linear trammn to WRSW wvewde
\

Fig. 11. Young’s experimental setup with dimensions in inches.

‘“’r—————l
2.0 –

1.8

\

1.4 –
\’, ,O”\\

. ,!
,\
\l /:
$!,,

1.2 — \## \ ----
●:2.

,.,~
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Frequency (GHz)

Fig. 12. Calculated VS WR using Galerkin’s method, considering the
TE1O, TE11, TM11, and TM1l modes, dividing the transition into six
sections, each of which was anatyzed with E = 6, and taking into
account the characteristics of the step transformer.

factory solution with the inclusion of evanescent modes.

The VS WR for this example transition is very close to the

VS WR computed using only one mode. Agreement be-

tween these curves and Young’s experimental data [12] is

good, except below 1.1 GHz. This agreement may be

improved as follows. Up to now, a perfect match has been

assumed at the z = L plane. In fact, the transition was

mated with an eight-step transformer (Fig. 11). The char-

acteristics of this transformer were analyzed using a

mode-matching technique with three modes in each section

(e.g., [22]). The scattering matrix of the transformer may

be linked together with the scattering matrix of the linear

transition to describe the behavior of the overall system.

When this is done to the Galerkin method (three modes,

six cascaded sections) procedure for the linear transition,

the VS WR curve takes the form shown in Fig. 12. This

curve shows very little change above 1.1 GHz. Below 1.1

GHz, however, agreement between theory and experiment

is greatly improved.

V. CONCLUSION

A simple waveguide transition has been analyzed by

generating a solution to the generalized telegraphist’s equa-

tion via a moment method technique. Numerical stability

and accuracy and consistency of the results are critically

dependent on the choice of weighting and expansion func-

tions. The best results for a simple rectangular-to-rectangu-

lar transition were obtained when Galerkin’s method and

triangle expansion functions were applied to several short

sections which were then cascaded. Unlike the Runge–

Kutta technique or the integration technique, the Galerkin’s

method procedure did not result in instabilities with the

inclusion of evanescent modes. Our programs can, in fact,

be extended to any number of modes, the only apparent

limitations being the obvious ones of computer time and

memory, and all three techniques are now being studied

for possible applicability to the analysis of transitions

between rectangular single-mode and circular overmoded

waveguide such as the Marie transducer (e.g., [6], [7]) and

the multiport transition described in [8].
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