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Numerical Solution of the Continuous
Waveguide Transition Problem

WILLIAM A. HUTING, MEMBER, IEEE, AND KEVIN J. WEBB, MEMBER, IEEE

Abstract —Waveguide transitions are an essential part of many mi-
crowave systems. A simple transition between two sizes of rectangular
waveguide is analyzed by using the generalized telegraphist’s equation.
Solutions are obtained using a new moment method technique, a
Runge-Kutta algorithm, and an iterative numerical integration technique.
The results are compared to previously published experimental and numer-
ical data.

I. INTRODUCTION

HE TE,, CIRCULAR waveguide mode is character-

ized by an attenuation which decreases monotonically
with frequency [1]. Thus, operating in this mode at a
frequency well above cutoff is a widely used method of
achieving low-loss transmission over long distances (see,
for example, [2]). This implies operation in the multimode
regime. Unfortunately, many microwave power sources are
not compatible with circular overmoded waveguide but
instead with standard sizes of rectangular and circular
waveguide. The problem of designing a transition between
rectangular single-mode waveguide and circular over-
moded waveguide has been studied by various researchers
[3]-[8]. Another area of interest has been the task of
designing a transition between two sizes of circular wave-
guide (e.g., [9] and [10]). However, only a relatively small
number of papers have considered numerical approaches
to the waveguide transition design problem [6], [7], [10].
.These approaches can be divided into two classes: the
solution of a system of ordinary differential equations [6],
[7], [10], and an approximation of the transition as a series
of steps and the subsequent use of a mode-matching
technique [10]. A new approach to the differential equation
method using the method of moments [11] is presented
here. As a test problem, this technique is applied to a
simple transition between two sizes of rectangular wave-
guide, as illustrated in Fig. 1. Other approaches are also
discussed. The results obtained here are compared to pre-
viously published experimental [12] and numerical [7] data.
Finally, the moment method technique is briefly discussed
in terms of its applicability to overmoded transition prob-
lems.
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Fig. 1. Rectangular-to-rectangular waveguide transition.

Z = O plane

Fig. 2. Generalized waveguide transition geometry.

II. THE GENERALIZED TELEGRAPHIST'S EQUATION

One of the earliest theoretical treatments of nonuniform
waveguides was given by Reiter [13], who utilized the
well-known fact that uniform waveguide modal fields can
be used as a complete orthogonal basis for physically
realizable electromagnetic fields [14]. Extending this con-
cept to waveguide transitions such as that shown in Fig. 2,
he asserted that the transverse electromagnetic fields could
be written as a sum of the transverse mode functions [13]:

E(x.y.2)= ¥ V(Den(xinnz) (1)

m=1

H(x,p.2)= ¥ 1(z)h,(x.9.2)

m=1

(2)

where the parameters V,,(z) and I,(z) are known respec-
tively as the equivalent voltages and the equivalent cur-
rents. A discussion of the validity of (1) and (2) can be
found in [9] and [16]. By inserting (1) and (2) into the
transverse form of Maxwell’s equations and applying the
appropriate boundary conditions on the transition inner
surface, one obtains the so-called generalized telegraphist’s
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equation [13], [15], [16}:

14 Ty T,
Vs Ty %
d :
e |\L| |-wz, o
I 0 ~T2/Z,
where
de;

Z/Ej;fj ——ds.

The variables vy, in (3) are the complex propagation con-
stants and the variables Z, are the modal impedances.
Solymar [17] decomposed the equivalent voltages and cur-
rents into forward- and backward-traveling waves and
gave some approximate solutions to the resultant system of
differential equations. Later, Saad er al. evaluated numeri-
cally the approximate expressions of Solymar for several
transitions including the simple rectangular-to-rectangular
transition [7] to be treated in this paper. Our approach
deals with (3) directly. Let the two ends of the transition
occur in the planes z =0 and z = L. What is sought is the
hybrid matrix (K(z)) as defined by

(V( )) (K(2 ))(ﬁ((g))) )

As noted in [10], the differential equation for (K(z)) is
given by

2(K)=(€)(K) )

where (C) is the square matrix from (3). The initial condi-
tion used in the solution of (6) is

K(z=0)=U (7)

where U is the unit (or identity) matrix. In this paper, the
matrix (K) is evaluated according to (6) and (7) and
(K(z = L)) is subsequently used to calculate the general-
ized scattering matrix. which characierizes the overall tran-
sition {18].

III. SOLUTIONS VIA A MOMENT

METHOD TECHNIQUE

The first step in our method of solution is to truncate
the infinite system of ordinary differential equations given
in (3). Let N denote the number of differential equations
and let g denote the column of the (K') matrix for which a
solution is sought. Equation (6) is written symbolically as

Hnem LG, ®)

with the boundary condition
K, (z2=0)=38,, (9)

where §,,, is the Kronecker delta function. One physical
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interpretation for (8) and (9) is seen by comparison with
(3). If the equivalent voltage or current occupying the gth
position in the column vector in (3) is set equal to 1 at
z =0 and all other equivalent voltages and currents are set
equal to zero at that position, then (3) is identical to (8)
and (9), and solution of (8) and (9) simply gives the
equivalent voltages and currents along the length of the
transition under these conditions.

We now approximate each element X,
expansion functions:

E
Kmq(z) = /glalmfl(Z). (10)

In the discussion that follows, it will be assumed that
fi(z=0)=1, and that all the other expansion functions
vanish at z = 0. Thus, the boundary condition represented
by (9) becomes

as the sum of E

(11)

As a first step in ‘obtaining a solution for the remaining
coefficients w,,,, we consider of set of (E —1) weighting
functions w,. An inner product is defined by

(g, hy= /OLg(z)h(z)dz. (12)

Combining (8) and (10) and taking the appropriate inner
products, one obtains

E df,
L)

Rearranging (13) and making use of (11), one finds

d
Zl 122(<wk’—-fi> mn_<wk’ mnfl>)aln

daf \
- <Wk’ —d—z_ >é'mq + <wk’ Cmqf1>' (14)

Gm ™= qu'

E N
Q= Z Z Wies Coun 1) 0 (13)
I=1n=1

Equation (14) may be written in matrix form as

(B)- (&) = (¢).
The elements of (B) are given by
b(m—1)(E-1)+k,(n—1)(E-1)+1-1)

d
= <wk’—d—fj >8mn~<wk’cmnfl> (16)

(15)
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Fig. 3. Expansion and weighting functions for E=35. (a) Triangle ex-

pansion functions. (b) Pulse weighting functions. (¢) Weighting func-
tions for Galerkin’s method.

with
l<m,n<N
l<k<E-1
2<I<E.

Here b(i, j) refers to the element occupying the ith row
and jth column of (B). (B) is a square matrix with
dimension N(E —1). The elements of the column vectors
(&) and (¢) are given by

a(n—-1(E-1)+1-1)=a, (17)
df,

c(m-1)(E-1)+k)=- ( <Wk, e >6mq+<wk’cmqf1>‘
(18)

It should be noted that the matrix (B) is in no way
dependent on which column of the (K) matrix is being
evaluated.

In this paper, we use one set of expansion functions and
two sets of weighting functions. The set of expansion
functions consists of the subsectional triangles

z—z z—z 1
1—(E-1)| T R e
fi= 0 z—z . 1 (19)
L E-1
where
=(i—1)—— 1 =1,2,3,---  E. 20
ZI (l )E—-l, 1 gy Iy > ( )

A graph of these triangle functions is given in Fig. 3(a).
For weighting functions, one may choose a set of pulses

= {g i (21)

otherwise.
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Fig. 4. Theoretical versus experimental VSWR for linear transition.
The theoretical curve was generated considering only the TE10 mode.
The same results were obtained using a Runge-Kautta technique, an
iterative integration technique, and Galerkin’s method with triangle
expansion functions.

These pulses are shown in Fig. 3(b). There is one more
expansion function than there are weighting functions. The
“extra” expansion function, however, is f;(z), which has a
known coefficient, determining (¢). In this paper, the inner
products which make up (B) are evaluated numerically
using the midpoint rule [19] with 20 integration points per
triangle base.

As an alternative to (21), one may use Galerkin’s method,
as illustrated in Fig. 3(c), where

Wi = fiit (22)
For this choice, the set of weighting functions is the same
as the set of expansion functions (not counting the expan-
sion function f;, which has a known coefficient). Use of
(19) and (22) is also termed a finite element method [20].

IV. NUMERICAL RESULTS

In this section, a simple linear single-mode transition
between standard WR-650 waveguide and a waveguide
with the same width but a smaller height is analyzed. The
dimensions of this device are (Fig. 1): @ =6.500 in, b, =
3.250 in, b,=0.400 in, L =19.392 in. There are three
reasons for choosing this transition as a test case. First of
all, closed-form expressions are easily derived for the ele-
ments of the matrix in (3). Second, dimensions and experi-
mental results (for TE,, incidence on the large end of the
transition between 1.0 and 1.8 GHz) are given by Young
[12]. Finally, this transition was also analyzed by Saad
et al. [7]. They solved the one-mode version of Solymar’s
differential equation [17] by two methods, namely numeri-
cal integration of Solymar’s approximate expressions and
use of the standard IBM routine DLBVP [23], and they
found the two computed VSWR’s to be in agreement to
within 5 percent [7]. For the one-mode case, we solved (8)
using a Runge-Kutta technique. Our computed VSWR,
which is shown in Fig. 4 along with Young’s experimental
data, appears to be extremely close to [7, fig. 3]. Theory
and experiment are in good agreement except below 1.1
GHz, where in the experiment the small end of the transi-
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tion appears to have been poorly matched. We also solved
the one-mode problem two other ways. One method con-
sisted of successively integrating (6) until (K) converged to
a solution. For the first iteration, (K) was set equal to the
identity matrix. According to [10], this method, when
applied to circular-to-circular transitions, yields the same
results as discretizing the transition boundary and apply-
ing mode matching and uses a comparable amount of
"computer time. We found that by employing the midpoint
rule [19] with 100 integration points, the VSWR curve
approached that of Fig. 4 after 50 iterations. Finally,
Galerkin’s method was used with triangle expansion func-
tions and E = 31. Condition numbers for (B) were com-
puted by multiplying the one-norm of (B) by the one-norm
of the computed inverse of (B). The reasons for computing
this parameter are that a matrix with a high condition
number. tends to amplify errors due to factors such as
roundoff. Condition numbers close to 1 are desirable [21].
Although the condition numbers were high (typically 4 X
10%) the results for the VSWR and the (2X2) scattering
matrix were identical to those computed using the
Runge—Kutta technique. The reciprocity relation S;, = S,;
was extremely well satisfied by the moment method and
the Runge—Kutta routines, but it was not well satisfied by
the integration technique. The amounts of computer time
used on the Hitachi NAS 9160 were seven seconds for the
Runge-Kutta technique, six minutes for the integration
technique, and six minutes for the Galerkin method pro-
gram. The moment method routines described in this
section all employed double precision (64 bit) arithmetic,
while the one-mode Runge—Kutta and integration routines
employed single precision arithmetic. None of the routines
were optimized with respect to run time or storage.

When the evanescent TE,; and TM,; modes are in-
cluded in (8), numerical instabilities occur in both the
Runge—Kutta routine and the iterative integration tech-
nique. For the linear transition, a double precision version
of the Runge—Kutta routine failed to converge even though
the number of points was varied between 11 and-501.
Similarly, a double precision version of the integration
technique program also failed to converge. The method of
moments was also used, taking the TE,,, TE,;, and TM,;
modes into account. Fig. 5 shows. the calculated VSWR for
E=6,7,8,9,10 using trianglée expansion functions and
Galerkin’s method. For E = 6, condition numbers ranged
from 2x10% to 2x10°, while for E =10, condition num-
bers were in the range 2x10% to 3x10°. The computed
VSWR seemed to agree with the experimental results on
average with greater oscillations as E was increased. An
alternative method of solution is to divide the transition

~ into several sections of equal length, to analyze each sec-
tion with E =6, to cascade the several sections, and to
compute the overall scattering matrix. Cascading simply
involves multiplication of the (K) matrices representing
each section. Fig. 6 shows the results when the transition
was divided into one through six sections, again using
Galerkin’s method. For six sections, most of the condition
numbers were in the range 3X107 to 1X10% and the
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Fig. 5. Calculated VSWR using triangle expansion functions and
Galerkin’s method. The TE10, TE11, and TM11 modes weré consid-
ered and the number of triangles E was varied.
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Fig. 6. Calculated VSWR using triangle expansion functions and
Galerkin’s method and considering the TEL0, TE11, and TM11 modes.
The transition was divided into several sections, each of which was
analyzed with E = 6.

computed VSWR converged to a solution close to the
single-mode solution described above. Also, the solutions
for five and six sections were indistinguishable, indicating
convergence. Finally, as a simple check on the validity of
the Galerkin method program, a straight uniform wave-
guide was analyzed for E =6 and for six cascaded sec-
tions. The computed (6 X 6) scattering matrices were close
to the expected results, and condition numbers for (B)
were, typically, about 107,

Another check on the validity of the Galerkin method
program may be performed as follows. First, one writes
the generalized scattering matrix in submatrix form:

bl Sll SZLZ al
(b2)= g2 g2\ g2

where poit 1 occurs in the z = 0 plane and port'2 occurs in
the z==L plane. The mode coefficients 4’ and b' are

(23)
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explicitly written as

i i
aTE0L brEn
i i i | ni
a = | aren b'=| brey (24)
i i
4y TMI1

where i denotes the port (1 or 2). The submatrices S*!,
S12 821 and $22 have been truncated to 3X 3. From the
Lorentz reciprocity theorem, using normalized modes, one
may derive S} =S}, S2'=S]?, and S??=S?. These re-
quirements are poorly satisfied when Galerkin’s method is
used with £ =6 and one section but well satisfied for
E = 6 and six cascaded sections. Figs. 7 and 8 show several
of the computed scattering parameters as a function of
frequency for this later case. ‘

One possible explanation for the numerical problems
which occur in the three-mode case may lie in the fact that
(C) has higher condition numbers in the three-mode case
(4%x10° to 3x10°) than in the one-mode case (typically
4x10°). Both the Runge-Kutta technique and the itera-
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Fig. 10. Calculated VSWR using triangle expansion functions and pulse
weighting functions and considering the TE10, TE11, and TM11 modes.
The transition was divided into several sections, each of which was
analyzed with E =6,

tive integration technique involve repeated use of (C). In
comparison, the Galerkin method program involves a ma-
trix (B) which has a condition number somewhat higher
than that of (C), but it uses that matrix (B) only once, in
the solution of (15).

Fig. 9 shows the calculated VSWR for E =6,7,8,9,10
using the method of moments with triangle expansion and
pulse weighting functions. Computed condition numbers
ranged between 2 X 102 and 3 x10% for E = 6 and between
10'? and 10** for E =10. Dividing the transition into
several cascaded sections was also attempted and the re-
sults are shown in Fig. 10. The condition numbers ranged
between 10° and 4 X 10! for two sections and E = 6. In no
case were the reciprocity relations well satisfied for the
pulse weighting function method. For E larger than 10, or
for more.than two cascaded sections, the results became
unstable.

To summarize, of the techniques examined here, only
Galerkin’s method (with cascading) converges to a satis-
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WR-660 waveguide
Linear transiton to WR-650 waveguide
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Fig. 11. Young’s experimental setup with dimensions in inches.
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Fig. 12. Calculated VSWR using Galerkin’s method, considering the
TE10, TE11, TM11, and TM11 modes, dividing the transition into six
sections, each of which was analyzed with E =6, and taking into
account the characteristics of the step transformer.

factory solution with the inclusion of evanescent modes.
The VSWR for this example transition is very close to the
VSWR computed using only one mode. Agreement be-
tween these curves and Young’s experimental data [12] is
good, except below 1.1 GHz. This agreement may be
improved as follows. Up to now, a perfect match has been
assumed at the z=L plane. In fact, the transition was
mated with an eight-step transformer (Fig. 11). The char-
acteristics of this transformer were analyzed using a
mode-matching technique with three modes in each section
(e.g., [22]). The scattering matrix of the transformer may
be linked together with the scattering matrix of the linear
transition to describe the behavior of the overall system.
When this is done to the Galerkin method (three modes,
six cascaded sections) procedure for the linear transition,
the VSWR curve takes the form shown in Fig. 12. This
curve shows very little change above 1.1 GHz. Below 1.1
GHz, however, agreement between theory and experiment
is greatly improved.

V. CONCLUSION

A simple waveguide transition has been analyzed by
generating a solution to the generalized telegraphist’s equa-
tion via a moment method technique. Numerical stability
and accuracy and consistency of the results are critically
dependent on the choice of weighting and expansion func-
tions. The best results for a simple rectangular-to-rectangu-
lar transition were obtained when Galerkin’s method and
triangle expansion functions were applied to several short
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sections which were then cascaded. Unlike the Runge-
Kutta technique or the integration technique, the Galerkin’s
method procedure did not result in instabilities with the
inclusion of evanescent modes. Our programs can, in fact,
be extended to any number of modes, the only apparent
limitations being the obvious ones of computer time and
memory, and all three techniques are now being studied
for possible applicability to the analysis of transitions
between rectangular single-mode and circular overmoded
waveguide such as the Marie transducer (e.g., [6], [7]) and
the multiport transition described in [8].
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